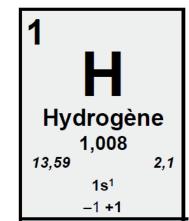

Hydrogène

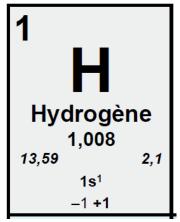


Structure et propriétés de l'atome

C'est un gaz incolore, inodore et dangereux,

Sa configuration électronique est 1s¹

Il existe sous trois isotopes.



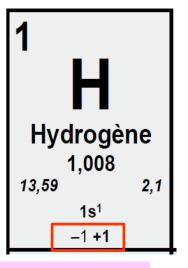
Nom	Symbole	Masse molaire	Abondance dans la nature	
		g/mol		
Hydrogène	${}^{1}_{1}\mathbf{H}$ (1 proton + 0 neutron)	1,008	99,98%	
	${}^{2}_{1}$ D (1 proton + 1 neutron)	2,014	0,02	
Deutérium Il est surtout utilisé pour préparer l'eau lourde				
	(ralentisseur de neutrons dans les piles atomiques)			
	${}^{3}_{1}T$ (1 proton + 2 neutrons)			
Tritium	Radioactif artificiel	3,016	traces	
	Il émet des particules β :			
	$^{3}_{1}\text{T} \rightarrow ^{2}_{1}\text{He} + ^{0}_{-1}\text{He}$			

10:25

Structure et propriétés de l'atome H

Nom	Symbole	Masse molaire	Abondance dans la nature
		g/mol	
Hydrogène	${}^{1}_{1}\mathbf{H}$ (1 proton + 0 neutron)	1,008	99,98%
	${}^{2}_{1}\mathbf{D}$ (1 proton + 1 neutron)	2,014	0,02
Deutérium	l'eau lourde		
	les atomiques)		
	${}^{3}_{1}T$ (1 proton + 2 neutrons)		
Tritium	Radioactif artificiel	3,016	traces
	Il émet des particules β :		
	$^{3}_{1}\text{T} \rightarrow ^{2}_{1}\text{He} + ^{0}_{-1}\text{He}$		

Le **tritium** est généralement obtenu par bombardement neutronique du ⁶₃ Li


$${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{6}_{3}\text{Li} + {}^{4}_{2}\text{He} + 4,5 \text{ MeV}$$

Le **tritium** est généralement obtenu par bombardement neutronique du ⁶₃ Li

$${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow {}^{6}_{3}\text{Li} + {}^{4}_{2}\text{He} + 4,5 \text{ MeV}$$

L'hydrogène a deux ions:

* le cation H+ (essentiellement covalent)

* et l'anion H⁻ (dans les hydrures métalliques). En captant un électron, l'hydrogène prend la configuration d'un gaz rare (l'helium 1s²)

Dans la molécule H_2 , il a le degré d'oxydation 0.

Pour former H+, il faut ioniser l'hydrogène selon l'équation suivante :

L'énergie nécessaire pour arracher un e- à l'hydrogène est très élevée / à celle des éléments du groupe I_A .

L'hydrogène a deux ions :

* le cation H+ (essentiellement covalent)

Pour former H⁺, il faut ioniser l'hydrogène selon l'équation suivante :

$$H (gaz) \rightarrow H^+ (gaz) + 1e$$
- L'énergie de la première ionisation de H est de l'ordre de 13,6 eV (= 313 kcal / mol)

L'énergie nécessaire pour arracher un e- à l'hydrogène est **très élevée** / à celle des éléments du **groupe** I_A .

Le proton H⁺ peut se former facilement dans les solvants polaires. L'énergie d'hydratation de H⁺ compense largement l'énergie d'ionisation.

Utilisation de l'hydrogène

L'H₂ est utilisé en pétrochimie pour la synthèse de l'ammoniac et de l'azote.

Il est utilisé aussi comme propergol pour les fusées.

Un propergol est un produit de propulsion

= constitué d'un mélange de comburant et de combustible,
 La réaction chimique, entre cet oxydant et ce réducteur,
 fournira l'énergie au moteur-fusée.

Utilisation de l'hydrogène

L'H est utilisé en pétrochimie pour la synthèse de l'ammoniac et de l'azote.

Il est utilisé aussi comme propergol pour les fusées.

Un propergol est un produit de propulsion

= constitué d'un mélange de comburant et de combustible, La réaction chimique, entre cet oxydant et ce réducteur, fournira l'énergie au moteur-fusée.

Les constituants peuvent se présenter à l'état de gaz, de liquide, de solide ou de plasma

Préparation de l'hydrogène

La matière première pour produire de **l'H₂** est : **l'eau** ou les **hydrocarbures**.

Préparation de l'H₂ à partir de l'eau

* Electrolyte (H₂O + 20% NaOH)

Préparation de l'hydrogène

La matière première pour produire de L'H₂ est : l'eau ou les hydrocarbures.

Préparation de l'H₂ à partir de l'eau

* Electrolyte (H₂O + 20% NaOH)

$$2 H_2O \rightarrow 2 H_2 + O_2$$

L'H₂ formé est très pur = cette méthode est trop chère (coûteuse).

* Réduction de H₂O:

$$3 \text{ Fe} + 4 \text{ H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4 \text{ H}_2$$
(très couteuse)

$$CO+ H_2O \rightarrow CO_2 + H_2$$
 (cette méthode est utilisée dans l'industrie)

Préparation de l'H₂ à partir des hydrocarbures

C'est le cracking des produits pétroliers en présence de la vapeur d'eau

$$C_nH_{2n+2} + n H_2O_{(vap)} \rightarrow n CO + (2n+1) H_2$$

 $n CO + n H_2O_{(vap)} \rightarrow n CO_2 + n H_2$

Globalement on aura :
$$C_nH_{2n+2} + 2n H_2O_{(vap)} \rightarrow n CO_2 + (3n+1) H_2$$

Propriétés chimiques de l'hydrogène

Réactivité de l'hydrogène

Les composés hydrogénés se répartissent en trois types suivant la nature de l'élément avec lequel il est combiné

Réaction avec les éléments du bloc S

Les **alcalins** et les **alcalino-terreux** se combinent avec $l'H_2$ pour donner des **solides ioniques**, et cela est dû à la différence $d'\chi$ de $l'H_2$ et celle de ces éléments. On appelle ces composés des **hydrures salins**.

Préparation de l'H₂ à partir des hydrocarbures

Avec les alcalins
$$M + H \rightarrow MH (M^+, H^-)$$

Avec les alcalino-terreux $M + 2H \rightarrow MH_2 (M^+, 2H^-)$
 $2Li + H_2 \rightarrow 2 (Li^+, H^-)$
 $Ca + H_2 \rightarrow (Ca^{2+}, 2H^-)$

Les hydrures salins se décomposent dans l'eau selon l'équation de la réaction chimique suivante :

$$LiH + H_2O \rightarrow LiOH + H_2$$

Les hydrures sont des **réducteurs** très puissants. Les hydrures salins réduisent facilement l'alumine Al_2O_3 en l'état Al, ce qui n'est pas possible avec l' H_2 moléculaire.

Réaction avec les éléments du bloc P

Les composés obtenus avec les éléments du bloc P sont les plus importants, leur formule est simple (exemple NH₃), d'une manière générale :

```
AH<sub>8-n</sub>; n: numéro du groupe auquel \in l'élément A. NH<sub>3</sub> (N \in V<sub>B</sub> NH<sub>8-5</sub> = NH<sub>3</sub>) FH (F \in VII<sub>B</sub> FH<sub>8-7</sub> = FH)
```

Réactivité avec les éléments chimiques

L'H₂ peut agir comme réducteur sur un certain nombre de dérivés métalliques (oxydes, sulfures, chlorures.....).

$$MX + H_2 \rightarrow H_2X + M$$
 (X peut être O, S électronégatif).

L' H₂ est un réducteur industriel qui est très couteux, on préfère le remplacer (dans le cas du possible) par CO